2016 Data Processing-NMDS

03/11/2017

NMDS in R using Vegan

I am using non-metric multidimensional (NMDS) to examine similarity between technical replicates using the vegan and raster packages in R.

First I took the Abacus_output.tsv file, imported it into Excel and removed all columns except:

  • PROTID
  • PROTLEN
  • the sample columns with addendum _ADJNSAF

I relabeled the column headers as followed for convience:

sample ID Sample # new sample ID Column # on CSV file Contents
pool0 1 60 2 pooled larvae
pool0 1A 61 3 pooled larvae
S2CD3 3 62 4 Silo 2, Cold, Day 3, Rep 1
S2CD3 3A 63 5 Silo 2, Cold, Day 3, Rep 2
S3CD3 4 64 6 Silo 3, Cold, Day 3, Rep 1
S3CD3 4A 65 7 Silo 3, Cold, Day 3, Rep 2
S9HD3 8 66 8 Silo 9, Hot, Day 3, Rep 1
S9HD3 8A 67 9 Silo 9, Hot, Day 3, Rep 2
S2CD5 11 68 10 Silo 2, Cold, Day 5, Rep 1
S2CD5 11A 69 11 Silo 2, Cold, Day 5, Rep 2
S3CD5 12 70 12 Silo 3, Cold, Day 5, Rep 1
S3CD5 12A 71 13 Silo 3, Cold, Day 5, Rep 2
S9HD5 16 72 14 Silo 9, Hot, Day 5, Rep 1
S9HD5 16A 73 15 Silo 9, Hot, Day 5, Rep 2
S2CD7 19 74 16 Silo 2, Cold, Day 7, Rep 1
S2CD7 19A 75 17 Silo 2, Cold, Day 7, Rep 2
s3CD7 20 76 18 Silo 3, Cold, Day 7, Rep 1
S3CD7 20A 77 19 Silo 3, Cold, Day 7, Rep 2
S9HD7 24 78 20 Silo 9, Hot, Day 7, Rep 1
S9HD7 24A 79 21 Silo 9, Hot, Day 7, Rep 2
S2CD9 27 80 22 Silo 2, Cold, Day 9, Rep 1
S2CD9 27A 81 23 Silo 2, Cold, Day 9, Rep 2
S3CD9 28 82 24 Silo 3, Cold, Day 9, Rep 1
S3CD9 28A 83 25 Silo 3, Cold, Day 9, Rep 2
S9HD9 32 84 26 Silo 9, Hot , Day 9, Rep 1
S9HD9 32A 85 27 Silo 9, Hot, Day 9, Rep 2
S2CD11 35 86 28 Silo 2, Cold, Day 11, Rep 1
S2CD11 35A 87 29 Silo 2, Cold, Day 11, Rep 2
S3CD11 36 88 30 Silo 3, Cold, Day 11, Rep 1
S3CD11 36A 89 31 Silo 3, Cold, Day 11, Rep 2
S9HD11 40 90 32 Silo 9, Hot, Day 11, Rep 1
S9HD11 40A 91 33 Silo 9, Hot, Day 11, Rep 2
S2CD13 43 92 34 Silo 2, Cold, Day 13, Rep 1
S2CD13 43A 93 35 Silo 2, Cold, Day 13, Rep 2
S3CD13 44 94 36 Silo 3, Cold, Day 13, Rep 1
S3CD13 44A 95 37 Silo 3, Cold, Day 13, Rep 2
S9HD13 48 96 38 Silo 9, Hot, Day 13, Rep 1
S9HD13 48A 97 39 Silo 9, Hot Day 13, Rep 2
S2CD15 51 98 40 Silo 2, Cold, Day 15, Rep 1
S2CD15 51A 99 41 Silo 2, Cold, Day 15, Rep 2
S3CD15 52 100 42 Silo 3, Cold, Day 15, Rep 1
S3CD15 52A 101 43 Silo 3, Cold, Day 15, Rep 2
S9HD15 56 102 44 Silo 9, Hot, Day 15, Rep 1
S9HD15 56A 103 45 Silo 9, Hot, Day 15, Rep 2

I then sorted the whole file from left to right (from lower to higher numerical values) using Row 1. This will put all my sample numbers in order.

Here is my file

I ran the following code in R:

#to install packages
install.packages(“vegan”)
install.packages(“raster”)
library(vegan)
library(raster)

#to input my data
cg.reps<-read.csv(‘/Users/rhondae/Desktop/2016DDA/Abacus_3_5_17/ABACUS_ADJNSAF.csv’,header=T,row.names=1)

#to calculate coefficient of variation across technical replicates for each biological replicate
pool0<-cbind(cg.reps[2],cg.reps[3])
S2CD3<-cbind(cg.reps[4],cg.reps[5])
S3CD3<-cbind(cg.reps[6],cg.reps[7])
S9HD3<-cbind(cg.reps[8],cg.reps[9])
S2CD5<-cbind(cg.reps[10],cg.reps[11])
S3CD5<-cbind(cg.reps[12],cg.reps[13])
S9HD5<-cbind(cg.reps[14],cg.reps[15])
S2CD7<-cbind(cg.reps[16],cg.reps[17])
S3CD7<-cbind(cg.reps[18],cg.reps[19])
S9HD7<-cbind(cg.reps[20],cg.reps[21])
S2CD9<-cbind(cg.reps[22],cg.reps[23])
S3CD9<-cbind(cg.reps[24],cg.reps[25])
S9HD9<-cbind(cg.reps[26],cg.reps[27])
S2CD11<-cbind(cg.reps[28],cg.reps[29])
S3CD11<-cbind(cg.reps[30],cg.reps[31])
S9HD11<-cbind(cg.reps[32],cg.reps[33])
S2CD13<-cbind(cg.reps[34],cg.reps[35])
S3CD13<-cbind(cg.reps[36],cg.reps[37])
S9HD13<-cbind(cg.reps[38],cg.reps[39])
S2CD15<-cbind(cg.reps[40],cg.reps[41])
S3CD15<-cbind(cg.reps[42],cg.reps[43])
S9HD15<-cbind(cg.reps[44],cg.reps[45])

pool0.cv<-apply(pool0,1,cv)
S2CD3.cv<-apply(S2CD3,1,cv)
S3CD3.cv<-apply(S3CD3,1,cv)
S9HD3.cv<-apply(S9HD3,1,cv)
S2CD5.cv<-apply(S2CD5,1,cv)
S3CD5.cv<-apply(S3CD5,1,cv)
S9HD5.cv<-apply(S9HD5,1,cv)
S2CD7.cv<-apply(S2CD7,1,cv)
S3CD7.cv<-apply(S3CD7,1,cv)
S9HD7.cv<-apply(S9HD7,1,cv)
S2CD9.cv<-apply(S2CD9,1,cv)
S3CD9.cv<-apply(S3CD9,1,cv)
S9HD9.cv<-apply(S9HD9,1,cv)
S2CD11.cv<-apply(S2CD11,1,cv)
S3CD11.cv<-apply(S3CD11,1,cv)
S9HD11.cv<-apply(S9HD11,1,cv)
S2CD13.cv<-apply(S2CD13,1,cv)
S3CD13.cv<-apply(S3CD13,1,cv)
S9HD13.cv<-apply(S9HD13,1,cv)
S2CD15.cv<-apply(S2CD15,1,cv)
S3CD15.cv<-apply(S3CD15,1,cv)
S9HD15.cv<-apply(S9HD15,1,cv)

oyster.cv<-cbind(pool0.cv,S2CD3.cv,S3CD3.cv,S9HD3.cv,S2CD5.cv,S3CD5.cv,S9HD5.cv,S2CD7.cv,S3CD7.cv,S9HD7.cv,S2CD9.cv,S3CD9.cv,S9HD9.cv,S2CD11.cv,S3CD11.cv,S9HD11.cv,S2CD13.cv,S3CD13.cv,S9HD13.cv,S2CD15.cv,S3CD15.cv,S9HD15.cv)

boxplot(oyster.cv,outline=T,names=c(‘pool0’,’S2CD3’,’S3CD3’,’S9HD3’,’S2CD5’,’S3CD5’,’S9HD5’,’S2CD7’,’S3CD7’,’S9HD7’,’S2CD9’,’S3CD9’,’S9HD9’,’S2CD11’,’S3CD11’,’S9HD11’,’S2CD13’,’S3CD13’,’S9HD13’,’S2CD15’,’S3CD15’,’S9HD15’))

Here is the boxplot

Here is the R code

Written on March 11, 2017